

FFAGs for Muon Acceleration

J. Scott Berg Brookhaven National Laboratory 8 November 2002

What is an FFAG?

- Fixed Field Alternating Gradient accelerator
- A single beamline transports a wide range of energy (factor of 2 or more)
- Add RF cavities, accelerate beam
 - ◆ Same beamline, constant fields, transports beam through entire acceleration cycle

Credit

- Presenting the work of many others
 - ◆ Yoshiharu Mori and a large group at KEK
 - ◆ Carol Johnstone
 - ◆ Dejan Trbojevic
 - ◆ Many others...

Motivation for Muon Acceleration

- Muons decay, so acceleration must be rapid
- Other schemes
 - ◆ Linac very expensive: high RF costs
 - Fast ramping synchrotron: challenging to make magnets ramp fast enough
 - ◆ Recirculating accelerator (like CEBAF)
 - **★** Racetrack shaped lattice
 - **★** Two linacs connected by multiple arcs
 - ★ Pass through linac multiple times, reusing RF
 - **★** Different energies pass through different arcs
 - * Limitations
 - > More arcs cost more money, but RF less for more arcs
 - > Switchyard challenging for many arcs: 20 arcs would seem impossible. Limits RF reduction.

BROOKHAVEN Motivation for Muon Acceleration (cont.)

- FFAG is like recirculating accelerator, but better (hopefully)
 - ◆ Pass through same arc multiple times: arc costs don't increase with turns
 - ◆ No obvious limitation in number of turns, except for tolerable decays
 - * RF requirements can be reduced significantly
- Chain multiple limited-range rings together to achieve full acceleration
- Path length variation with energy
 - FFAG cannot be made isochronous
 - ◆ Path length variation over energy range significant fraction of RF wavelength
 - Path length errors accumulate
 - Effectively limits number of turns in FFAG (leads to a minimum RF requirement)

Scaling FFAGs

- Traditional style: four have been built (3 at MURA, KEK)
- Orbits are geometrically similar
- Tunes and momentum compatction are constant: avoid resonances
- Magnetic fields in midplane proportional to r^k
 - ◆ Larger k reduces orbit excursion and thus magnet size
 - ◆ Larger k reduces path length variation with energy
 - ◆ Larger k gives greater nonlinearity, smaller dynamic aperture
 - ◆ k may be large (several 100)
- Biggest challenge: size and thus cost
 - Magnets tend to be large
 - ◆ Ring tends to be long
 - ◆ Reducing these require k increase, reducing dynamic aperture
 - ◆ There is probably much more room for optimization

Scaling FFAGs: Longitudinal Dynamics

- Monotonic relationship of path length to energy
- Traditional method: vary RF frequency
 - ◆ Not possible for large gradients needed for muon acceleration
- KEK method: large stationary RF bucket
 - ◆ Make RF bucket with width exceeding accelerating energy range
 - ★ Less RF required when path length variation with energy (momentum compaction) is low
 - ◆ Start at bottom of RF bucket, go half oscillation to top

Non-Scaling FFAGs

- Use traditional lattice designs: FODO, triplet, Chasman-Green, etc.
- Orbit at opposite sides of F and D quads
 - Switch sides at low and high energy
- Tune varies with energy
 - ◆ Must avoid linear resonances despite wide energy range
 - **★** Keep energy well above half integer (Johnstone FODO, triplet)
 - ★ Zero chromaticity (using sextupoles) to maximize distance to linear resonances (Trbojevic Chasman-Green)

Non-Scaling: Longitudinal Dynamics

- Path length variation with energy is parabolic
 - ◆ Proportional to square of bending angle
 - Proportional to cell length
 - ◆ Porportional to square of energy range
- Longitudinal dynamics
 - Cross crest three times
 - Minimum voltage required is proportional to energy gain required and range of path lengths
 - **★** Control of path length variation drives design

Non-Scaling: FODO

- Initial idea: FODO lattice with 3 m drifts, accelerating from 6 to 20 GeV
 - ◆ 200 MHz RF, which is frequency of bunch train
 - ◆ Needed for superconducting cavities: lower cost due to lower power
 - 3 m thought necessary for reduced field at cavities (1 m space on each side)
 - **★** Recent results call this into question
 - **★** Maybe can cool cavities first, then power magnets
 - Very costly
 - ★ Large path length difference due to long drifts, thus very few turns
 - ★ Long ring, since bend angle kept low to minimize path length variation
 - > Large decays
 - ◆ Excellent dynamic aperture

Non-Scaling: FODO (cont.)

Improvements

- Reduce drifts to 1 m
 - **★** May force normal conducting RF (but see above)
 - **★** Smaller path length variation
 - > Less RF required, so increased costs of NC mitigated
 - **★** Smaller magnet sizes
- Reduce energy range to 10 to 20 GeV
 - ★ Still can use SCRF
 - **★** Large improvement in path length variation
 - **★** Requires additional ring

Non-Scaling: FODO (cont.)

- Racetrack with compact cells in arcs, adiabatically matched to straights with long drifts
 - **★** Best of both worlds
 - > Large drifts for cavities
 - > Small path length variation due to short arc cells
 - **★** Achieving good match over large energy range is difficult (work in progress)
- ◆ May be able to add sextupoles to control path length variation

Non-Scaling: Other

- Using a triplet lattice instead of a FODO seems to give some improvement
- Chasman-Green based lattice
 - Keep beta function down in bend
 - Add sextupoles to control chromaticity
 - Advantages
 - **★** Very small magnet apertures
 - **★** Very low path length variation with energy
 - ◆ Problem: poor dynamic aperture

Conclusion

- We have several viable FFAG designs
- We have only begun to explore the space of possible machines and parameters
- These give us some hope of achieving significant cost reductions in acceleration of muons